

ETOS

[image: _images/Stage-Sandbox-yellow.svg]
 [https://github.com/eiffel-community/community/blob/master/PROJECT_LIFECYCLE.md#stage-sandbox]ETOS (Eiffel Test Orchestration System) is a new test orchestration system which takes away control of how to run and what to run from the system itself and places it into the hands of the relevant engineers.

The idea of having a system dictate what and how to run is finished. Let’s bring back control to the testers.

With ETOS we define how to run tests using recipes and we define what to run with collections of recipes.

ETOS Roles

	Test Engineer

	Test Automation Engineer

	System Engineer

	Create collections

	Create recipes

	Deploy ETOS

	Analyze results

	Create tests

	Infrastructure

	What to run?

	How to run?

	Where to run?

This means that only people who knows how and what to run decide these factors. ETOS will only receive the collection of recipes and execute it accordingly.
You can also mix test suites. For instance, let’s say you want to run a “go” unittest and a “python” function test in the same suite, that’s easy to do; just add them to your collection.

This is the strength of ETOS. Relying on the humans to decide what to run, how to run and where to run.

ETOS is a collection of multiple services working together. This repository is a facilitator of versioning, Helm charts and documentation.
The services are located in these repositories.

	ETOS Client

	ETOS API

	ETOS Suite Starter

	ETOS Suite Runner

	ETOS Test Runner

	ETOS Environment Provider

	ETOS Library

	ETOS Test Runner Containers

Features

	Generic test suite execution based solely on JSON.

	Mix and match test suites, regardless of programming language.

	Separation of concerns between testers, test automation engineers and system engineers.

	Eiffel protocol implementation.

Installation

Requirements

In order to install ETOS, you need to meet the following requirements.

	An up and running kubernetes cluster (https://kubernetes.io/)

	Helm version 3.x installed (https://helm.sh/)

Installation Steps

	First we need to add the Helm repository where the ETOS Helm charts are stored

helm repo add Eiffel registry.nordix.org/eiffel

	Then simply install ETOS using Helm

helm install <name of the ETOS deployments> eiffel/etos --namespace <your kubernetes namespace>

Deployment Configuration

Following the installation step will give you a default configured ETOS deployment. Chances are that the default deployment configuration of ETOS will not work for your Infrastructure.
To tailor the deployment to your specific infrastructure you need to create a configuration file and tell Helm to use that file when installing ETOS.

Here is an example of a standard ETOS configuration file that should get most configurations up and running.

global:
 # This is the URL to the Eiffel Graphql API
 graphqlServerUrl: http://eiffel-graphql-api.my.cluster-url.com
 # This is the URL where the deployed ETOS Environment Provider will be available
 environmentProviderUrl: http://environment-provider.my.cluster-url.com
 # This is the URL where the deployed ETOS API will be available
 etosApiUrl: http://etos-api.my.cluster-url.com

suite-starter:
 rabbitMQ:
 # this is the message queue where suite starter listens for Eiffel
 queue_name: suite_starter.queue

This is the configuration that should match your rabbitMQ deployment
ETOS needs a rabbitMQ service to be able to subscribe and publish Eiffel events
rabbitmqHost: dev-rabbitmq.myhost.com
rabbitmqExchange: my.eiffel.exchange
rabbitmqPort: "5671"
rabbitmqVhost: myvhost
rabbitMQ:
 username: rabbit_user
 password: rabbit_password

This is the configuration that should match your redis deployment
ETOS uses redis for internal communication and data storage
databaseHost: redis.redis.svc.cluster.local
databasePort: "26379"
redis:
 password: my_redis_password

Contribute

Please write issues in the relevant repositories for where you found the issue.

If you do not know which repository to write the issue for, feel free to write it here and it will be moved.

Documentation issues are reported here.

	Issue Tracker: https://github.com/eiffel-community/etos/issues

	Source Code: https://github.com/eiffel-community/etos

Support

If you are having issues, please let us know.
There is a mailing list at: etos-maintainers@googlegroups.com or just write an Issue.

Contents:

	Getting started
	Step by step

	ETOS Test Collection

	Concepts
	Execution Space

	IUT

	Log Area

	Versioning

	Release process

	Code rules

	Roles
	Test Engineer

	Test Automation Engineer

	System Engineer

	Services
	ETOS API

	ETOS Client

	ETOS Environment Provider

	ETOS Library

	ETOS Suite Runner

	ETOS Suite Starter

	ETOS Test Runner

	ETOS Test Runner Containers

	License

	Authors

	Contributing [https://github.com/eiffel-community/.github/blob/master/CONTRIBUTING.md]

	Code of conduct [https://github.com/eiffel-community/.github/blob/master/CODE_OF_CONDUCT.md]

Indices and tables

	Index

	Module Index

	Search Page

Getting started

Getting started:

	Step by step

	ETOS Test Collection

Step by step

Checklist

Setting up ETOS is a daunting task when you are doing it the first time around.
But it is also easy to miss a few steps that are required for it to work.

For this reason we have created a checklist in order to keep track of what needs to be done so that no steps are forgotten.

	 Set up a Kubernetes [https://kubernetes.io/] cluster (ETOS runs in Kubernetes)

 ETOS Test Collection

ETOS Test Collection

This page describes the ETOS test collection.

A test collection is how you trigger your tests. The test collection is a collection of recipes that are defined by the test automation engineers.
These recipes defines how ETOS will execute the tests.

This test collection is JSON file with several elements and can be quite tricky to create manually.

Structure

Top-level properties

[
 {
 "name": "Name of you suite",
 "priority": 1,
 "recipes": []
 }
]

Top level properties

	Property

	Type

	Description

	name

	String

	Test suite name. Will be referenced in the main test suite started.

	priority

	Integer

	The execution priority. Unused at present and should be set to 1.

	recipes

	List

	The collection of test execution recipes. Each recipe is a test case.

Recipes

[
 {
 "recipes": [
 {
 "constraints": [],
 "id": "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx",
 "testCase": {
 "id": "test_case_name",
 "tracker": "Name of test case tracker",
 "url": "http://testcasetracker.com/test_case_name"
 }
 }
]
 }
]

Recipe properties

	Property

	Type

	Description

	constraints

	List

	List of constraints describing how to execute this test case.

	id

	String

	Unique ID for this test case. Can be used to re-trigger failing test cases.

	testCase

	Dictionary

	Test case metadata.

	testCase/id

	String

	Name of this test case.

	testCase/tracker

	String

	The name of the tracker where this test case can be found.

	testCase/url

	String

	URL to the tracker for this test case.

Constraints

[
 {
 "recipes": [
 {
 "constraints": [
 {
 "key": "ENVIRONMENT",
 "value": {
 "MY_ENVIRONMENT": "my_environment_value"
 }
 },
 {
 "key": "COMMAND",
 "value": "tox"
 },
 {
 "key": "PARAMETERS",
 "value": {
 "-e": "py3"
 }
 },
 {
 "key": "TEST_RUNNER",
 "value": "eiffel-community/etos-python-test-runner"
 },
 {
 "key": "EXECUTE",
 "value": [
 "echo 'hello world'"
]
 },
 {
 "key": "CHECKOUT",
 "value": [
 "git clone https://github.com/eiffel-community/etos-client"
]
 }
]
 }
]
 }
]

Constraint properties

	Property

	Value

	Description

	ENVIRONMENT

	Dictionary

	The environment key defines which environment variables that are needed for this test case execution.

	COMMAND

	String

	The command key defines which command to execute in order to run the specified test case.

	PARAMETERS

	Dictionary

	The parameters key defines which parameters you want to supply to the command that is executing the tests.

	TEST_RUNNER

	String

	Which test runner you need to execute the test cases in: See ETOS Test Runner Containers for more information.

	EXECUTE

	List

	The execute key defines a set of shell commands to execute before this test case.

	CHECKOUT

	List

	The checkout key defines how to checkout your test cases. The checkout values are executed in bash. This command is only executed once if it has already been executed.

 Concepts

Concepts

Concepts:

	Execution Space

	IUT

	Log Area

 Execution Space

Execution Space

An execution space is a system where docker containers can run.

In the ETOS world the execution space is responsible for receiving a run order where it will start a docker container using the instructions from the ETOS Environment Provider.

This execution space will then execute the docker container until completion and then shut down.

An example of an execution space is Jenkins [https://www.jenkins.io]

 IUT

IUT

IUT (or Item under test) is the current software, hardware or system that is currently under test.

This can be the website you’ve just created, a docker container or even a full software/hardware system.

 Log Area

Log Area

A log area is a system where ETOS stores logs after completing test execution.

This log area must have an API where it is possible to upload logs, test execution workspace, test artifacts and test suites.

An example of a log area is JFrog Artifactory [https://jfrog.com/artifactory/]

 Versioning rules

Versioning rules

ETOS uses semantic versioning in the form of “MAJOR.MINOR.PATCH”

	MAJOR: A large change, sometimes breaking changes.

	MINOR: A smaller change, never a breaking change.

	PATCH: A bugfix required in production.

Each ETOS component have their own versioning and will be selected for an ETOS release every other wednesday.

The ETOS helm charts might get a PATCH update outside of the regular release schedule if there are breaking changes that need to be patched in production.

If you want all PATCH releases for the current MINOR release: “>= 1.1.0 < 1.2.0”

If you want all MINOR releases: “>= 1.0.0 < 2.0.0”

We do not recommend you running latest at all times, since we can break backwards compatability between MAJOR releases.
Breaking changes WILL BE announced ahead of time.

 Release Process

Release Process

The ETOS release process is as follows.

All ETOS components will have their own release process using continuous integration.
This means that all components will have different releases at all times.

Every other wednesday (uneven weeks) the ETOS project will get a new tag and a new release and all helm charts will be updated with the new component versions.

When there are breaking changes in ETOS upcoming, there will be milestones with deadlines for each stage of a breaking change.
For backwards compatibility we will first deprecate the feature with a feature flag to disable it.
We will create issues for changing the default behavior to disabled two weeks from the deprecation release.
We will also create issues for removing the feature completely two weeks from the disable release.

This means that, at worst, users get a 4 week heads up for breaking changes. And by breaking changes, we mean that a developer may have to change something in their code or ETOS Test Collection before they can upgrade.

Each milestone is considered a new release with a version number (either minor or major)

 Code Rules

Code Rules

Tox [https://tox.readthedocs.io] is executed on each pull request to execute all tests, linters and code rules.

This can also be run locally by installing tox [https://tox.readthedocs.io/en/latest/install.html] and running the command.

	black [https://github.com/psf/black] for general code formatting.

	pydocstyle [http://www.pydocstyle.org] for checking docstring formats using pep257 [https://www.python.org/dev/peps/pep-0257].

	pylint [https://www.pylint.org] as the main linter.

 Role specific documentation

Role specific documentation

ETOS Roles

	Test Engineer

	Test Automation Engineer

	System Engineer

	Create collections

	Create recipes

	Deploy ETOS

	Analyze results

	Create tests

	Infrastructure

	What to run?

	How to run?

	Where to run?

Roles:

	Test Engineer

	Test Automation Engineer

	System Engineer

 Test Engineer

Test Engineer

The test engineers role is to create the recipe collection that defines what to test.

Responsibilities of a test engineer

	Creating collections of recipes.

	ETOS Client

	Checking test results

This documentation is unfinished.

 Test Automation Engineer

Test Automation Engineer

The test automation engineers role is to create the recipes that defines how to execute any test case.

Responsibilities of a test automation engineer

	ETOS Test Runner (The recipe part)

	Creating the tests

	Making sure the tests work

This documentation is unfinished.

 System Engineer

System Engineer

The system engineers role is to maintain the system and to create provider instructions.

Responsibilities of a system engineer

	ETOS API

	ETOS Suite Starter

	ETOS Suite Runner

	ETOS Environment Provider

	Registering providers

	ETOS Test Runner

	Infrastructure

	Eiffel GraphQL API [https://eiffel-graphql-api.readthedocs.io]

	RabbitMQ [https://www.rabbitmq.com/]

	Execution spaces

	Jenkins [https://www.jenkins.io/]

	Kubernetes [https://kubernetes.io/]

	etc

	Log areas

	JFrog Artifactory [https://jfrog.com/artifactory/]

	etc

This documentation is unfinished.

 Services

Services

This page documents the use of all services within ETOS.

If you are just learning about ETOS we recommend the Getting started page.

Services:

	ETOS API

	ETOS Client

	ETOS Environment Provider

	ETOS Library

	ETOS Suite Runner

	ETOS Suite Starter

	ETOS Test Runner

	ETOS Test Runner Containers

 ETOS API

ETOS API

The launcher of ETOS.

Github: ETOS API [https://github.com/eiffel-community/etos-api]

The ETOS API is a python microservice running on Falcon [https://falcon.readthedocs.io] that provides the following functionalities:

	Generate and execute and ETOS test suite. (Sending ETOS Test Collection to ETOS)

 ETOS Client

ETOS Client

Main client for ETOS.

Github: ETOS Client [https://github.com/eiffel-community/etos-client]

This page describes the ETOS client and its options as well as some examples of how it can be used. ETOS Client is a command-line tool that can be used in Continuous Integration tools such as jenkins as well as locally on workstations.

Why ETOS Client?

The ETOS client is a tool built to make it easier to execute ETOS (Eiffel Test Orchestration System). It is used for starting test suites in ETOS, and reporting the outcome.

Eager to get started

A getting started page can be found here: Getting started

CLI Overview and Command Reference

Prerequisites

	Python 3.6 or higher.

	Git (optional)

Installation

There are two methods for installing the package.

Install using pip (Recommended)

Recommended for most users. It installs the latest stable version released.
ETOS client can be found on PyPi. If you have the pip package manager installed, then the simplest way of installing ETOS Client is using the following command:

pip install etos_client

Instructions that virtually take you by the hand and guide you every step of the way is available among our Step by step articles.

Install using Git

Recommended for developers who want to install the package along with the full source code. Clone the package repository, and install the package in your site-package directory:

git clone "https://github.com/eiffel-community/etos-client.git" client
cd client
pip install -e .

General Syntax

The usage example below describes the interface of etos_client, which can be invoked with different combinations of options. The example uses brackets “[]” to describe optional elements. Together, these elements form valid usage patterns, each starting with the program’s name etos_client.

Below the usage patterns, there is a table of the command-line options with descriptions. They describe whether an option has short/long forms (-h, –help), whether an option has an argument (–identity=<IDENTITY>), and whether that argument has a default value.

etos_client [-h] -i IDENTITY -s TEST_SUITE [--no-tty] [-w WORKSPACE] [-a ARTIFACT_DIR] [-r REPORT_DIR] [-d DOWNLOAD_REPORTS] [--iut-provider IUT_PROVIDER] [--execution-space-provider EXECUTION_SPACE_PROVIDER] [--log-area-provider LOG_AREA_PROVIDER] [--dataset DATASET] [--cluster CLUSTER] [--version] [-v]

Command-line options

ETOS Client

	Option

	Argument

	Meaning

	-h, –help

	n/a

	Show help message and exit.

	-i, –identity

	IDENTITY

	Artifact created identity purl to execute test suite on.

	-s, –test-suite

	TEST_SUITE

	URL to test suite where the test suite collection is stored.

	–no-tty

	n/a

	Disable features requiring a tty.

	-w, –workspace

	WORKSPACE

	Which workspace to do all the work in.

	-a,–artifact-dir

	ARTIFACT_DIR

	Where test artifacts should be stored. Relative to workspace.

	-r,–report-dir

	REPORT_DIR

	Where test reports should be stored. Relative to workspace.

	-d,–download-reports

	DOWNLOAD_REPORTS

	Should we download reports. Can be ‘yes’, ‘y’, ‘no’, ‘n’.

	–iut-provider

	IUT_PROVIDER

	Which IUT provider to use. Defaults to ‘default’.

	–execution-space-provider

	EXECUTION_SPACE_PROVIDER

	Which execution space provider to use. Defaults to ‘default’.

	–log-area-provider

	LOG_AREA_PROVIDER

	Which log area provider to use. Defaults to ‘default’.

	–dataset

	DATASET

	Additional dataset information to the environment provider. Check with your provider which information can be supplied.

	–cluster

	CLUSTER

	Cluster should be in the form of URL to ETOS API.

	–version

	n/a

	Show program’s version number and exit

	-v, –verbose

	n/a

	Set loglevel to DEBUG.

Environment variables

It is possible to specify an option by using one of the environment variables described below.

Precedence of options

If you specify an option by using a parameter on the CLI command line, it overrides any value from the corresponding environment variable.

Optional Environment Variables

	Name

	Required

	Meaning

	ETOS_GRAPHQL_API

	Yes

	Specifies URL to Eiffel GraphQL API instance to use.

	ETOS_API

	Yes

	Specifies the URL to the ETOS API for starting tests.

	WORKSPACE

	no

	Which workspace to do all the work in.

	IDENTITY

	Environment or required input

	Artifact created identity purl to execute test suite on.

	TEST_SUITE

	Environment or required input

	URL to test suite where the test suite collection is stored.

Examples

TBD

Known issues

All issues can be found here: https://github.com/eiffel-community/etos-client/issues

Stuck and in need of help

There is a mailing list at: etos-maintainers@google.groups.com or just write an Issue.

 ETOS Environment Provider

ETOS Environment Provider

Github: ETOS Environment Provider [https://github.com/eiffel-community/etos-environment-provider]

The ETOS environment provider is used to fetch an environment in which to execute test automation on. An environment is the combination of IUTs, Log areas and Execution spaces.

Each provider is in the form of JSONTas and must be registered with a name in the environment provider before starting any tests.
The ETOS environment provider can have multiple providers registered for each role and a provider can be chosen as an input parameter to ETOS Client.

It is recommended to add one provider of each type with the name ‘default’ in order to make it easier for the user (as they don’t have to supply a name to ETOS Client.

JSONTas

The ETOS environment provider uses JSONTas [https://jsontas.readthedocs.io] in order to structure the providers. Static JSON is still supported (JSONTas just won’t do anything).

A JSONTas structure can be quite complex but is useful for generating dynamic JSON structures based on several factors. More examples on JSONTas can be found in their examples [https://jsontas.readthedocs.io/en/latest/examples.html]

There are a few built-in datastructures in the environment provider as well in order to make life easier.

	json_dumps: Dump an entire segment to string.

	uuid_generate: Generate a UUID4 string

	join: Join a list of strings together.

For the Execution Space Provider there is another data structure.

	execution_space_instructions: Used to override the instructions or add more instructions for the Execution Space.

General Structure

The general structure of a provider is comrised of at least 3 different main parts.

	List

	Checkout

	Checkin

List

List is where we list the possible and available items.
Possible is the number of possible items. If it’s 0 then the environment provider will exit with
“Could not checkout”.

If possible>0 but available is 0, that means there are items possible to checkout but they are not available yet and the environment provider will wait until they are (with a maximum limit).

Note that the listing can be a request to a management system or just a static list of items, but both the ‘available’ and ‘possible’ keys must be set.

Checkout

An optional parameter in the provider structure. It’s a command which will ‘checkout’ the item from a management system, if there is one available.

The checkout can also return more values to add to the resulting JSON.

Checkin

An optional parameter in the provider structure. It’s a command which will ‘check in’ the item to a management system, making the item available for others.

IUT Provider

An IUT provider returns a list of JSON data describing an IUT (Item Under Test).

The IUT provider follows the general structure of ‘list’, ‘checkout’ and ‘checkin’ but also adds another part which is the ‘prepare’ part.

Prepare

The prepare part of the IUT Provider is defined with stages and steps. A stage is ‘where shall this preparation run’ and the step is ‘what should we run to prepare the IUT’.

There is currently only a single ‘stage’ and that stage is ‘environment_provider’ which is run just after the ‘checkout’ step in the provider.

Each step is a key, value pair where the key is the name of the step and the value is a JSONTas structure.

A sample preparation step which will execute three steps. One where the return value is a dictionary, one where the return value is a part of the previous step and the third requests a webpage.

Note that this example does not do anything with the IUT. It is virtually impossible for us to describe the steps required for your technology domain as it all depends on how your systems are set up.
This preparation step can request APIs that you’ve set up internally for various scenarios.

{
 "prepare": {
 "stages": {
 "environment_provider": {
 "steps": {
 "step1": {
 "something": "text",
 "another": "text2"
 },
 "step2": {
 "previous_something": "$steps.step1.something"
 },
 "step3": {
 "$request": {
 "url": "https://jsonplaceholder.typicode.com/users/1",
 "method": "GET"
 }
 }
 }
 }
 }
 }
}

Example

A single static IUT

{
 "iut": {
 "id": "default",
 "list": {
 "possible": [
 {
 "type": "$identity.type",
 "namespace": "$identity.namespace",
 "name": "$identity.name",
 "version": "$identity.version",
 "qualifiers": "$identity.qualifiers",
 "subpath": "$identity.subpath"
 }
],
 "available": "$this.possible"
 }
 }
}

Using a management system

{
 "iut": {
 "id": "mymanagementsystem",
 "checkout": {
 "$condition": {
 "then": {
 "$request": {
 "url": "http://managementsystem/checkout",
 "method": "GET",
 "params": {
 "mac": "$identity.name"
 }
 }
 },
 "if": {
 "key": "$response.status_code",
 "operator": "$eq",
 "value": 200
 },
 "else": "$response.json.message"
 }
 },
 "checkin": {
 "$operator": {
 "key": {
 "$from": {
 "item": {
 "$request": {
 "params": {
 "id": "$iut.id"
 },
 "url": "http://managemenetsystem/checkin",
 "method": "GET"
 }
 },
 "get": "id"
 }
 },
 "operator": "$eq",
 "value": "$iut.id"
 }
 },
 "list": {
 "possible": {
 "$request": {
 "url": "http://managementsystem/list",
 "method": "GET",
 "params": {
 "name": "$identity.name"
 }
 }
 },
 "available": {
 "$filter": {
 "items": "$this.possible",
 "filters": [
 {
 "key": "checked_out",
 "operator": "$eq",
 "value": "false"
 }
]
 }
 }
 }
 }
}

With a preparation step

{
 "iut": {
 "id": "default",
 "list": {
 "possible": [
 {
 "type": "$identity.type",
 "namespace": "$identity.namespace",
 "name": "$identity.name",
 "version": "$identity.version",
 "qualifiers": "$identity.qualifiers",
 "subpath": "$identity.subpath"
 }
],
 "available": "$this.possible"
 },
 "prepare": {
 "stages": {
 "environment_provider": {
 "steps": {
 "step1": {
 "something": "text",
 "another": "text2"
 },
 "step2": {
 "previous_something": "$steps.step1.something"
 },
 "step3": {
 "$request": {
 "url": "https://jsonplaceholder.typicode.com/users/1",
 "method": "GET"
 }
 }
 }
 }
 }
 }
 }
}

Log Area Provider

A log area provider makes sure that the ETOS system knows where and how to store logs and test artifacts during and after execution.

A log area has several parts that must exist within the resulting log area definition (after listing and checking out)

	livelogs (required): A path to where live logs from the system can be viewed. Used in the test suite events.

	upload (required): How to upload logs to the log area system. Follows the same syntax as JSONTas requests [https://jsontas.readthedocs.io/en/latest/api/jsontas.data_structures.html#jsontas.data_structures.request.Request] (without the ‘$’ signs)

	
	logs (optional): Extra formatting on logs.

	
	prepend: an extra value to prepend to log files.

	join_character: With which character to join the prepended data. Default: ‘_’

Example using JFrog Artifactory.
Checkout any number of artifactory instances, storing logs in a folder based on the Eiffel context.
Also prepend IP Address if the IUT has an ‘ip_address’ property.

{
 "log": {
 "id": "artifactory",
 "list": {
 "possible": {
 "$expand": {
 "value": {
 "livelogs": {
 "$join": {
 "strings": [
 "https://artifactory/logs/",
 "$context"
]
 }
 },
 "upload": {
 "url": {
 "$join": {
 "strings": [
 "https://artifactory/logs/",
 "$context",
 "/{folder}/{name}"
]
 }
 },
 "method": "PUT",
 "auth": {
 "username": "user",
 "password": "password",
 "type": "basic"
 }
 },
 "logs": {
 "$condition": {
 "if": {
 "key": "$iut.ip_address",
 "operator": "$regex",
 "value": "^(?:[0-9]{1,3}\\.){3}[0-9]{1,3}$"
 },
 "then": {
 "prepend": "$iut.ip_address"
 },
 "else": {}
 }
 }
 },
 "to": "$amount"
 }
 },
 "available": "$this.possible"
 }
 }
}

Execution Space Provider

An execution space provider makes sure that the ETOS system knows where it can start the ETOS Test Runner.
The execution space must have one required key, which is the ‘request’ key. This key is the description of how the ETOS Suite Runner can start the ETOS Test Runner instance.

There is also a field called ‘execution_space_instructions’ that is dynamically created every time and can be overriden if more information needs to be added. These instructions are the instructions for how to execute the ETOS Test Runner docker container.

Example of a Jenkins execution space provider

{
 "execution_space": {
 "id": "jenkins",
 "list": {
 "possible": {
 "$expand": {
 "value": {
 "request": {
 "url": "https://jenkins/job/DELEGATION/build",
 "method": "POST",
 "headers": {
 "Accept": "application/json"
 },
 "data": {
 "json": {
 "$json_dumps": {
 "parameter": [
 {"name": "docker", "value": {
 "$json_dumps": "$execution_space_instructions"
 }
 }
]
 }
 }
 }
 }
 },
 "to": "$amount"
 }
 },
 "available": "$this.possible"
 }
 }
}

Overriding the execution space instructions (note that the ‘$json_dumps’ value has changed).

{
 "execution_space": {
 "id": "jenkins",
 "list": {
 "possible": {
 "$expand": {
 "value": {
 "instructions": {
 "$execution_space_instructions": {
 "environment": {
 "MYENV": "environment variable"
 },
 "parameters": {
 "--privileged": ""
 }
 }
 },
 "request": {
 "url": "https://jenkins/job/DELEGATION/build",
 "method": "POST",
 "headers": {
 "Accept": "application/json"
 },
 "data": {
 "json": {
 "$json_dumps": {
 "parameter": [
 {"name": "docker", "value": {
 "$json_dumps": "$expand_value.instructions"
 }
 }
]
 }
 }
 }
 }
 },
 "to": "$amount"
 }
 },
 "available": "$this.possible"
 }
 }
}

The default instructions are as follows (all can be overriden):

instructions = {
 "image": self.dataset.get("test_runner"),
 "environment": {
 "RABBITMQ_HOST": rabbitmq.get("host"),
 "RABBITMQ_USERNAME": rabbitmq.get("username"),
 "RABBITMQ_PASSWORD": rabbitmq.get("password"),
 "RABBITMQ_EXCHANGE": rabbitmq.get("exchange"),
 "RABBITMQ_PORT": rabbitmq.get("port"),
 "RABBITMQ_VHOST": rabbitmq.get("vhost"),
 "SOURCE_HOST": self.etos.config.get("source").get("host"),
 "ETOS_GRAPHQL_SERVER": self.etos.debug.graphql_server,
 "ETOS_API": self.etos.debug.etos_api,
 "ETOS_ENVIRONMENT_PROVIDER": self.etos.debug.environment_provider,
 },
 "parameters": {}
}
instructions["identifier"] = str(uuid4())
instructions["environment"]["SUB_SUITE_URL"] = "{}/sub_suite?id={}".format(
 instructions["environment"]["ETOS_ENVIRONMENT_PROVIDER"],
 instructions["identifier"],
)

This is a great place to get value from the optional dataset that can be passed to ETOS Client.
The dataset is always added as a dataset to JSONTas and any value can be referenced with the ‘$’ notation in the JSONTas provider files.

Note that the dataset can be added to any part of the JSON files. See here for more examples

{
 "instructions": {
 "$execution_space_instructions": {
 "environment": {
 "MYENV": "$my_dataset_variable"
 },
 "parameters": {
 "--privileged": "",
 "--name": "$docker_name"
 }
 }
 }
}

Splitter

The test suite spliter algorithms describe the strategy in which to split up the test suites when there are more than 1 IUT & Execution Space.

The feature of configuring this is not yet implemented. The idea is to either describe it with JSONTas or as extensions to ETOS.

The default splitter algorithm is round robin.

Dataset

A dataset in JSONTas [https://jsontas.readthedocs.io] is a data structure with values in it that can be accessed using a ‘$’ notation.
For instance if the dataset contains a dictionary:

{
 "myname": "Tobias"
}

Then that value can be accessed using this JSONTas:

{
 "aname": "$myname"
}

The dataset structure also has what is called a ‘DataStructure’ which is a command that can be executed to generate JSON from another source or based on conditions.

Dataset:

{
 "myname": "Tobias"
}

JSONTas

{
 "atitle": {
 "$condition": {
 "if": {
 "key": "$myname",
 "operator": "$eq",
 "value": "Tobias"
 },
 "then": "The best",
 "else": "The worst"
 }
 }
}

More examples for JSONTas can be found here [https://jsontas.readthedocs.io/en/latest/examples.html].

There are also several DataStructures implemented into the ETOS environment provider explained below.

json_dumps

Dump a subvalue to string.

JSON

{
 "a_string": {
 "$json_dumps": {
 "a_key": "a_value"
 }
 }
}

Result

{
 "a_string": "{\"a_key\": \"a_value\"}"
}

uuid_generate

Generate a UUID4 value

JSON

{
 "uuid": "$uuid_generate"
}

Result

{
 "uuid": "a72220c2-eca0-491e-8638-b8e4bdd56f56"
}

join

Join a list of strings together. These strings can be JSON dataset values.

JSON

{
 "joined": {
 "$join": {
 "strings": [
 "I generated this for you: ",
 "$uuid_generate"
]
 }
 }
}

Result

{
 "joined": "I generated this for you: 96566362-98e0-47f6-abdb-9e3e45fc7c1a"
}

API

To register a provider into the environment provider you just have to do a POST request to the ‘register’ API with the JSONTas description.

Example using curl

curl -X POST -H "Content-Type: application/json" -d "{\"execution_space_provider\": $(cat myexecutionspaceprovider.json)}" http://environment-provider/register

You can also register multiple providers at once

curl -X POST -H "Content-Type: application/json" -d "{\"execution_space_provider\": $(cat myexecutionspaceprovider.json), \"log_are_provider\": $(cat mylogareaprovider.json), \"iut_provider\": $(cat myiutprovider.json)}" http://environment-provider/register

Note that it may take a short while for a provider to be updated.

 ETOS Library

ETOS Library

Github: ETOS Library [https://github.com/eiffel-community/etos-library]

This page describes the ETOS library which is a library of common components used by ETOS.

 ETOS Suite Runner

ETOS Suite Runner

Github: ETOS Suite Runner [https://github.com/eiffel-community/etos-suite-runner]

This page describes the ETOS Suite Runner (ESR). A system for executing test suites in ETOS.

 ETOS Suite Starter

ETOS Suite Starter

The gateway to ETOS.

Github: ETOS Suite Starter [https://github.com/eiffel-community/etos-suite-starter]

This page describes the ETOS Suite starter.

 ETOS Test Runner

ETOS Test Runner

The ETOS executor.

Github: ETOS Test Runner [https://github.com/eiffel-community/etos-test-runner]

This page describes the ETOS test runner (ETR)

ETOS test runner, or short ETR, is the base test runner that executes tests defined in an ETOS test recipe collection.
The test collection contains information from the Test Execution Recipe Collection Created Event (TERCC [https://github.com/eiffel-community/eiffel/blob/master/eiffel-vocabulary/EiffelTestExecutionRecipeCollectionCreatedEvent.md]) and also some additional meta data about the test environment.

Test execution

When ETR executes tests it communicates the following events to the Eiffel message bus (RabbitMQ)

	Test Suite Started [https://github.com/eiffel-community/eiffel/blob/master/eiffel-vocabulary/EiffelTestSuiteStartedEvent.md]

	Test Case Triggered [https://github.com/eiffel-community/eiffel/blob/master/eiffel-vocabulary/EiffelTestCaseTriggeredEvent.md]

	Test Case Started [https://github.com/eiffel-community/eiffel/blob/master/eiffel-vocabulary/EiffelTestCaseStartedEvent.md]

	Test Case Finished [https://github.com/eiffel-community/eiffel/blob/master/eiffel-vocabulary/EiffelTestCaseFinishedEvent.md]

	Test Suite Finished [https://github.com/eiffel-community/eiffel/blob/master/eiffel-vocabulary/EiffelTestSuiteFinishedEvent.md]

ETR always executes one test suite and several test cases within that suite, thus sending only one test suite started/finished pair but several collections of test case triggered/started/finished

When the test suite has finished executing ETR sends a Test Suite Finished event signaling the test results for the test suite it just executed.

Test artifacts

When a test is executed generally there are test artifacts created. These artifacts are typically test results, test logs and specific logs and debugging information from the IUT (item under test). All of the test artifacts are uploaded to a log area , such as Jfrog Artifactory.

 ETOS Test Runner Containers

ETOS Test Runner Containers

Github: ETOS Test Runner Containers [https://github.com/eiffel-community/etos-test-runner-containers]

This page describes the available test runner containers.

A test runner container is a docker image with the required tools and commands installed for executing your particular test recipe.

A typical test container is: “etos_python_test_runner” which comes with python pre-installed.

Available test runner containers

Base Test Runner

The base test runner maintained by the ETOS maintainers. This will include a system and python version that works with the ETOS Test Runner and will not take into account any other test runner container other than making sure that they work with ETOS Test Runner.

This means that whoever is responsible for a test runner container makes sure that all dependencies that are required exists within that test runner.

Versioning based on Debian distribution name.

	Latest Debian

	Latest python

	Pyenv for installation and selection of python versions

	ETOS Test Runner

	eiffel-community/etos-base-test-runner:buster

	eiffel-community/etos-base-test-runner:stretch

Python Test Runner

Maintainer: Maintainers

Latest Debian and installs python with pyenv

Versioning based on python (examples)

	eiffel-community/etos-python-test-runner:2.7.16

	eiffel-community/etos-python-test-runner:3.5.3

	eiffel-community/etos-python-test-runner:3.7.3

	eiffel-community/etos-python-test-runner:3.8.3

Go Test Runner

Maintainer: Maintainers

Latest Debian and installs Go.

Versioning based on Go (examples)

	eiffel-community/etos-go-test-runner:1.12.6

Rust Test Runner

Maintainer: Maintainers

Latest Debian and installs Rust.

Versioning based on Rust (examples)

	eiffel-community/etos-rust-test-runner:1.44.0

 License

License

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "[]"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is d